Improved DNA extraction technique from blood clot for diagnosis of *Trypanosoma evansi* in camels

Abstract

The detection of *Trypanosoma evansi* genetic material in clinical samples is considered an important diagnostic tool. When blood clots can be a valuable source of genetic information. In our paper, Forty blood samples were collected from camels at Cairo abbatoir in plane tubes. Blood clots were dispersed by scissor and treated by lysis buffer and proteinase-K, then DNA was extracted according to protocol of Gene JET Whole Blood Genomic DNA Purification Mini Kit. the quality and integrity of the extracted DNA were corroborated by agarose gel electrophoresis and conventional PCR. Results confirmed that DNA purified from clotted blood can be used in further amplifications. Moreover 16 out of 40 samples (40%) were positive in PCR with bands at the expected molecular weight (164pb). The objective of the present study was to improve and develop a more sensitive method to recover *T. evansi* DNA from clot samples.

Key words: *Trypanosoma evansi*, Blood clot, DNA, PCR.
Introduction

Trypanosoma evansi is enzootic in camels in Egypt, and bovine hosts act as efficient reservoir for camel infection (Hilali et al., 2004; Elhaig et al., 2013). Although *T. evansi* infects a wide diversity of mammalian hosts but camels, horses and dogs remain the most perilous hosts for this parasite (Fernandez et al. 2009; Desquesnes et al. 2013; Rjeibi et al. 2015). Economical and medical impacts of *T. evansi* has donated by its capability to spread mutely via healthy carriers. Although *T. evansi* is inapparent in most cases, the parasite affects livestock productivity causing mortality, reduced animal production and reproduction performance and low carcass quality (Reid 2002; Desquesnes et al. 2013). Nucleic acid-based assays are considered to be the most effective tools for the detection of *T. evansi* in several animals and vectors (Sukhumsirichart et al. 2000). Moreover, polymerase chain reaction (PCR) based assays give chance for parasite identification at levels underneath the detection limit of other parasitological techniques. Several factors should be kept to adjust PCR sensitivity, amount and quality of extracted DNA is one of the most precarious factors (Gonzales et al. 2006). So, extraction methods of DNA with high-quantity, besides high-quality, is a critical stage for further molecular assays (Mardan-Nik et al. 2019). In the past, clotted blood was normally discarded even though it is considered a great source for DNA, so that some methods had optimized DNA extraction from blood clot (Zakaria et al. 2013). Blood clot should be physically smashed and dissolved prior DNA extraction, to improve the quality and quantity of DNA yield (Wong et al. 2007; Xu et al. 2010). Some techniques used mesh with centrifuge after separation in serum-separator tubes (Xu et al. 2010). Other techniques used scalpels for dispersing clotted blood (Siafakas et al. 1995). The aim of the present study is to develop a simple, safe, and efficient technique for dissolving of the blood clot before DNA extraction, furthermore using DNA yield in subsequent conventional PCR, to ensure the efficacy of our technique.

Material and Methods

A total number of 40 blood samples were collected from camels at Cairo abattoir in a plane tubes. Samples were clotted and transferred to Parasitology laboratory at Parasitology Department, Faculty of Veterinary Medicine, Alexandria University. **Blood Clot Treatment Before DNA Extraction:** Each blood clot was added into a petri dish then; it was dispersed using a sterilized scissor into small parts. Dispersed blood clots were returned back to blood collecting tube with addition of 1.5 ml of Blood lysis buffer and 20µl of proteinase K. Then they were left overnight at room temperature. In the next day, clots were completely dissolved and became ready for DNA extraction. **DNA Extraction** DNA was extracted following the protocol of Gene JET Whole Blood Genomic DNA Purification Mini Kit (Thermo scientific Califorerna). Briefly, Twenty µl of proteinase K solution were added to 200µl of dissolved blood, mix by vortexing, then 400µl of lysis solution were added, mixed thoroughly by vortexing to obtain a uniform suspension. The sample was then incubated at 56°C for 10 minutes while using shaking water bath. 200µl of ethanol (96-100%) were added and mixed by pipetting. The prepared mixture was transferred to the spin column, centrifuged for 1 minute at 6000 xg (about 8000rpm). The collection tube containing the flow-through solution was discarded. The column was placed into a new 2ml collection tube. 500µl of wash buffer1 (with ethanol added) were added, centrifuged for 1 min at 8000 xg (about 10000 rpm). The
flow-through was discarded and the column was placed back into the collection tube. 500µl of wash buffer 2 (with ethanol added) was added to the column, centrifuged for 3 min at maximum speed (≥ 20000xg, ≥14000rpm). The collection tube containing the flow-through solution was discarded. The column was transferred to a sterile 1.5 ml micro centrifuge tube. 200µl of elution buffer were added to the centre of the column membrane to elute genomic DNA. The tubes were incubated for 2 min at room temperature and centrifuged for 1 min at 8000xg (about 10000 rpm). Extracted genomic DNA was stored at -20°C till used.

Evaluation of Extracted DNA

Extracted DNA was evaluated by Agarose gel electrophoresis and conventional PCR.

Agarose Gel Electrophoresis

In order to assess DNA degradation and the molecular weight of the DNA, gel electrophoresis was performed by loading 5µL of extracted DNA on 1.2% agarose gels prepared in 0.5X TBE buffer and using a 100 bp marker ladder (Thermo scientific).

Conventional PCR

PCR was carried out for amplification of 164 bp by using minichromosomesatellite DNA, subgenus trypanozoon specific primers, TBR 1/2 (TBR-1 Forward 5’-GAATATTTAACAATGCGCAG-3; TBR-2Reverse 5’ CCATTATTAGCTTTGTGTC-3’). The primer was used at a concentration of 10 pmol/µl. The PCR protocol was according to Herrera et al (2005) with some modifications. Briefly, the PCR amplification was performed in a total reaction volume of 25 µl containing: 12.5 µl Dream Taq Green master mix (Thermo Scientific), 1.5 µl DNA template, 1µl of each primer and was completed with nuclease free water. The samples were thermo cycled in 3Prime thermal cycler (TECHNE, UK) with initial denaturation at 95°C for 3 min. then 35 cycles of denaturation at 95°C for 30 seconds, annealing at 50°C for 30 seconds and extension at 72°C for 30 seconds with a final extension at 72°C for 7 min.

Results

Agarose gel electrophoresis showed intact bands for DNA (Fig. 1). Results of conventional PCR confirmed that DNA purified from clotted blood can be used in further amplifications. 16 out of 40 samples (40%) were positive with bands at the expected molecular weight (164pb) (Fig. 2).

Fig (1): Gel containing intact DNA bands

![Fig (1): Gel containing intact DNA bands](image1)

Fig (2): Ethidium bromide stained gel of PCR for *T.evansi* at 164bp showing repetitive nature of this gene

![Fig (2): Ethidium bromide stained gel of PCR for *T.evansi* at 164bp showing repetitive nature of this gene](image2)
Discussion
Molecular diagnostic techniques are considered critical tools for the detection of *T.evansi* infection globally due to their accuracy and reliability. (Desquesnes & Davila, 2002; Sengupta et al. 2010). In the present study, we have developed and improved a rapid, easy technique for DNA extraction from clot samples. The technique is based on the initial disruption of clot using a scissor, lysis buffer and proteinase K, followed by the internationally standardized DNA extraction protocol for the molecular diagnosis of *T.evansi* in camels. DNA yield was highly purified with enough amounts to be used in molecular techniques. Moreover, the extracted DNA was used for detection of *T.evansi* using conventional, which revealed infection rate of 40%. Our results agreed with that of De Abreu et al. (2018) who used the extracted DNA from clotted blood in diagnosis of *Plasmodium* spp. in human and non-human primates from the Brazilian Atlantic Forest. Moreover, Mayta et al. (2019) added that DNA extraction of clot samples showed better sensitivity than either whole blood or buffy coat in diagnosis of *T.cruzi*. In addition to, Lundblom et al. (2011) confirmed that high speed shaking of frozen blood clot is an efficient method to extract DNA for detection of *P.falciparum* parasites and the human thalassaemia gene. Frozen archived blood clots can be used as a source of DNA in cases where serum is routinely collected for clinical tests. (Bank et al. 2013). Zakaria et al (2013) developed an alternative method to extract DNA and RNA from clotted blood using sonication with QIAamp spin column for use in various genomic and molecular investigations. Moreover, Adkin et al (2002) obtained high quality DNA from 15 individual clotted blood samples used for single nucleotide polymorphism genotyping.

Conclusion
In conclusion, blood clots can be a valuable source of genetic information, optimizing costs, handling time and reducing the amount of blood collected from each subject. Thereby, the creation of a blood clot bank could aid the resolution of several ecological, evolutionary and epidemiological issues.

Acknowledgment
This work was supported by the Science and Technology Development fund (STDF) through the project entitled “Investigating drug resistance and new treatments for *Trypanosoma evansi* in Egyptian camels” (code number 27730) which is a joint project between Alexandria University, Egypt and Keele University, UK within the frame work of the Egypt-UK Cooperation (Newton-Fund Institutional Links Grants).

References:

الخخصر العربي

طريقة خطوة الستعالي الحمض النووي من الدم للتجنله تشخيص المترابوسوم ايفاني في الجمال

سماية سيف أبو عطادة و اميرة و حيد دور قسم الطياتيات
كلية الطب البيطري . جامعة السادات.
الوز المبتدئ: 2198

Amira.Wahid@alexu.edu.eg

يثير وجود المادة لورانية لتترايبوسوما ايفاني في العينة وسيلة جيدة للتشخيص. بينما ينص الدم المنطط صدر جيد لمادة الورانية. ففي هذه الدراسة تم جمع 40 عينة من دم الجمال اثناء عملية الجرح بمجرر القاهرة في أحيان خالية من مضادات المنطط لتشخيص وجود طنين الترباجوسوما ايفاني. تم اخذ الدم المنطط وتقطيعه في وسائل ومعاملات بالبروز بادر والبرونيناز كترسل طول البناء. تم عمل استخالص لحبيس النووي من العينة باباع الكامنات في التحلية الخاصة. بتشخيص الحبيس النووي من الدم. ثم تم نجيج الحبيس النووي المتخلص من الدم المنطط عن طريق تمريره على جل في جهاز الكهترافريز وربط عليه، ووجود حبيس رووي جديد في كل الغريبات. ثم عمل داخل الورالة المشرسل والذي لفت عين وجود المادة الورانية لتترايبوسوما ايفاني في 16 عينة من اجمالي 40 عينة بسماية 40% عدد الوزن الجزئي الخاص لترايبوسوما ايفاني (64637 بيور). العدد من هذه الدراسة هو تطور طريقة جديدة
بسبب وحساسية الستعالي الحبيس النووي لترايبوسوما ايفاني من الدم المنطط.

EVMPSJ 2020,16: 1-7
Abu-Akkada and Dewier.