Abstract:

Tick-borne diseases (TBDs) are important factors that affect the development of animal husbandry worldwide, in both tropical and subtropical area. The aim of this study is to investigate the prevalence of the Piroplasma species in both Al Gabal al Akhdar region in northeastern Libya and Ismailia, Egypt. Blood samples were collected randomly from 748 apparently healthy animals from various localities in Libya and Egypt during the period extending from January 2020 to January 2021. Giemsa-stained thin blood films were used for direct microscopy, conventional PCR was used for molecular identification of the samples. The results showed the prevalence of Piroplasma in Egypt was 23.9% in cattle and 19.5% in buffaloes, while in Libya the cattle was 27.6%, 31% in sheep, and 21% in goats. Real-time PCR in the diagnosis of blood parasites may give better results than conventional PCR.

Key words: Molecular, Microscopic, Haemoparasites, Microscopic, Babesia spp., Theileria spp.
Introduction

Tick-borne diseases (TBDs) are important factors that affect the development of animal husbandry worldwide. They have an effect on wild and domesticated animals, and most are considered neglected and/or emerging zoonotic diseases (Homer et al., 2000). Bovine production and health are significantly impacted by hemoprotozoans, particularly Theileria, Babesia, and Trypanosome (Rajput et al., 2005). These protozoa have the ability to cause significant economic losses for the livestock industry worldwide (Ananda et al., 2009) such as mortalities, decreased production and lowered working efficiency (Uilenberg, 1995), in addition to increasing the costs of control measures (Makala et al., 2003). Babesia spp. resembles short and long loop formation in RBC, whereas Theileria spp. RBC is annular, round, dot, and rod-shaped (Song et al., 2018).

In Libya, because of the economic significance of sheep in their inherited traditions, they have priority among all farm animals. Despite that, there is a lack of information about the haemoparasites prevalence in domestic animals in Libya. In many countries around the world, sheep are a key source of the meat, milk, and wool that are produced. Africa produces up to 10.9 and 8.4% of its total meat from sheep and goats, respectively (Arafa, 2002).

In general, Babesia bovis is the most pathogenic (Adham et al., 2009). Nevertheless, Theileria species serve as the cause of a group of tick-borne diseases known as Theilerioses, among which T. parva and T. annulata are the two most virulent and economically important (Schudel et al., 2004), besides, they are considered the most common causes of theileriosis in bovine (Gebrekidan et al., 2016).

T. parva, which causes East Coast fever (ECF), is found in 14 countries (Tarimo, 2013) in sub-Saharan Africa, ECF is still the most common tick-borne disease affecting cattle in that region (Demessie and Dermo, 2015) while T. annulata which causes Tropical Theileriosis occurs in North Africa as well as Asia and southern Europe (Schudel et al., 2004). Theileria and Babesia spp. are widely distributed (Uilenberg, 1995). Babesiosis in the ovine can cause an acute disease characterized by hemoglobinuria, icterus, fever, and hemolytic anemia. Meanwhile, ovine theileriosis is responsible for lymphoproliferative diseases which are characterized by high morbidity and mortality (Alessandra and Santo, 2012).

Material and Methods:

Animals and study area

748 blood samples were collected from apparently healthy animals (goats, sheep, buffaloes and, cattle) between January 2020 and January 2021 from different regions throughout Egypt and Libya.

Blood examination

Blood samples were randomly collected from a total of 209 (113 buffaloes and 96 cattle) from different regions in Ismailia, Egypt, and 539 (105 cattle, 372 sheep, and 62 goats) from different regions in Al Gabal al Akhdar province, Libya. These animals are apparently healthy and some cases show some clinical signs such as fever (41 °C), swelling lymph nodes, lacrimation, loss of appetite, diarrhea, emaciation, anemia, and hemoglobinuria, with degrees of jaundice appearing in vaginal and conjunctival mucous membranes, and a drop in milk production and abortions. The samples were collected using a sterile syringe,
approximately 2 ml from the jugular vein of the animals infested with hard ticks, before being dispersed into EDTA containing tubes, and transported in an icebox to the laboratory, each sample divided into two parts, the first part stored at -20 °C for molecular identification and the other part stored at 4 °C for morphological identification.

Thin blood smear preparation and microscopic examination

Blood samples were prepared for microscopic examination according to the standard protocol (Benzamin, 2010), and according to Soulsby (1968) The samples were morphologically identified.

Molecular identification

DNA Extraction

Genomic DNA was extracted and purified from 200μl of blood using the QIAamp® DNA blood Mini Kit (QIAGEN) according to the manufacturer’s instructions. The extracted DNA was stored at -20 °C until use.

PCR amplification of the 18S rRNA gene of Babesia spp.

The following ingredients were added to a 25μl PCR reaction tube: 2mM MgCl2, 0.2mM dNTPs, Taq polymerase (0.05μl), 7μl of DNA, 4μl of nuclease-free water, a set of primers (2 pmol) oligonucleotide primers (Piro-18-F2 ACT GTC AGA GGT GAA ATT CTT AG and Piro-18-R all AAT AAT TCA CCG GAT CAC TCG) were used to amplify the 18S rRNA.

The PCR was carried out in a thermal cycler (C1000 Thermal Cycler, Bio Rad, USA) using 35 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C for 45 seconds, and a final extension step of 72 °C for 5 minutes. The Power Pac (BioRad, USA) was used for (1.5%) agarose gel electrophoresis on the PCR products (5 μl) under predetermined guidelines (90 volts and 50 minutes).

Sequence analysis

Gel Bands were excised, purified, and sent for sequencing. The South Korean company Solgent Co. Ltd. carried out the Sanger sequencing. Sample Sequences were analyzed using BLAST®.

Phylogenetic analysis

Based on the 18S rRNA sequences of several closely related Babesia species, phylogenetic analysis was performed. MEGAX was used in the phylogenetic tree construction (Kumar et al., 2018).

Statistical analysis

Statistical analysis was carried out using Chi Square (X2) test for comparing infested and non-infested animals in each location of tick collection.

Results

The characteristic features of the piroplasma using a light microscope:

Morphology of Babesia spp. in cattle, buffalo, sheep and goat

Babesia is classified into two groups based on morphology: small babesia (1.0–2.5μm long), which includes *Babesia bovis*, and large *Babesia* (2.5–5.0μm long), which includes *B. bigemina*. *Babesia bovis* is a minute parasite that often lives in the middle of the erythrocyte. It is typically found in pairs that are at an oblique angle to one another and is roughly 1-1.5μm long and 0.5-1.0μm wide (Fig. 2D). While *B. bigemina* is a considerably longer babesia and is typically seen in pairs with an acute angle to one another, it normally has a pear-shaped shape but can also be found in a variety of forms (Fig. 1). It is 3 to 3.5μm long and 1 to 1.5μm wide. Paired forms frequently exhibit two distinct red-staining spots in each parasite (*B. bovis* usually has only one) (Fig. 2A, 2B). *B. ovis* is small parasite which is 1–2.5μm in length (<2.5μm), round or rare pyriform, having obtuse angle present at the margin of the red cells. (Fig. 3).

Morphology of Theileria in cattle, buffalo, sheep, and goat

In the red blood cells, forms of the piroplasm typically take the shape of circular, ring-
shaped, or oval ring-shaped (0.5-1.5µm) (Figs. 4, 5).

Prevalence of piroplasmosis
In this study, 209 randomly collected blood samples from Ismailia province, Egypt (96 cattle, 113 buffaloes) and 539 randomly collected blood samples from Gabal al Akhdar province, Libya (110 cattle, 72 sheep, and 62 goats) were morphologically examined using Giemsa-stained thin blood films.

In Ismailia Province, Egypt, the results revealed infection by Babesia spp. (Babesia bigemina and B. bovis) and Theileria annulata infection. The infection rate of both Babesia and Theileria spp. were (6.25% and 17.70%) in cattle, respectively, while (3.5% and 15.9%) in buffaloes respectively (Table 1), the total prevalence of piroplasma infection was (23.9%) in cattle and (19.5%) in buffaloes, at different localities was (41.2, 12.5, 33.3, 25.0, and 15.8%) in the following districts; Kasassin, Elabtal, Kantara, Abu atwa, and Sarabiom respectively. The total prevalence of the infected buffaloes at different localities was (27.3, 15.0, 10.7, 29.4, and 19.2%) from Kasassin, Elabtal, Kantara, Abu atwa, and Sarabiom respectively (Table 1). In Gabal al Akhdar Province, Libya, the results revealed the infection by Babesia spp. (B. bigemina and B. bovis) in cattle and (B. ovis) in sheep and goats and the infection with Theileria annulata in cattle and T. ovis in sheep and goats. The total infection by Babesia spp. was (9.5, 6.5, and 6.5%) in cattle, sheep, and goats respectively, whereas the total infection with Theileria spp. was (18, 24.7, and 14.5%) in cattle, (Table 1). The total prevalence of piroplasma infection in the examined cattle at different localities was 27.6% in cattle, 116 (31%) in sheep and 13 (21%) in goats, and (20, 17, 35, 40.9, and 27%) in the following districts; Al-Bayda, Shahat, Faydyah, Massah and Gandula respectively. The total prevalence of infected sheep was (41, 19, 27, 29, and 40%) respectively, from Al-Bayda, Shahat, Faydyah, Massah, and Gandula. The total prevalence of the infected goats at different localities was (13, 33, 30, 6, and 43%) from Al-Bayda, Shahat, Faydyah, Massah, and Gandula respectively (Table 1).

Molecular identification of Piroplasma
A total of 100 blood samples from Egypt and Libya that tested positive for piroplasm morphologically were used in the molecular diagnosis. In spite of Theileria spp. samples being positive morphologically many of them failed to amplify utilizing PCR. The samples which positive were identified as Babesia bigemina and B. bovis based on the 18S rDNA gene; their GenBank accession numbers are (OM662297, OM662298, OM662299, OM662300, OM662301).

Phylogenetic analysis:
Based on the 18S ribosomal DNA gene, the phylogenetic analysis was performed using MEGA X10.1 software and the tree using neighbor – joining (NJ) methods was constructed (Fig. 6). Our study sequences of Babesia species were clustered with species from Egypt, Turkey, and Cuba, and away from species from the USA, China, and Colombia, as they do not share their ancestor.

Discussion
The prevalence of piroplasma infection in cattle and buffalo in Ismailia, Egypt, according to the current study was 23.9 and 19.5 %, respectively. The findings showed that various researches have noted the varied frequencies of piroplasmosis among cattle and buffalo (Mohsin et al., 2022). The majority of research found that the infection in cattle was higher than in buffalo. These results reveal that water buffaloes are suspected to be persistent carriers that are undetected by microscopy or they possess a natural tolerance to the parasite. They also imply that additional restrictions on tick infestation of buffaloes may be related to their propensity to spend a lot of time submerged in water or rolling.
around in the mud, which acts as a natural means of ectoparasites controls (Hasson and Al-Zubaidi, 2014).

At Al Gabal al Akhdar, Libya, there were 27.6% of cattle with piroplasma infection. Piroplasma infection was present in 29.7% of sheep and goats overall, however, it was higher (31%) in sheep than in goats (13%). Goats may have a reduced rate of piroplasma infection because they pasture on steep, rocky terrain that limits their contact with ticks and other livestock species (Alessandra and Santo, 2012). The climatic conditions of the study area and the absence of hygiene measures may affect tick life cycles, which might increase tick infestations, therefore enhance the prevalence of blood parasites. Furthermore, alterations in blood parasite prevalence may be due to the immunological condition of the animals and the absence of veterinarian supervision’s guidance on medication administration, which results in variations in the prevalence rates of infection (Adham et al., 2009; Hussein et al., 2017).

The total prevalence of Babesia and Theileria spp. was 4.8 and 16.7% in cattle and buffaloes, respectively, in Ismailia, Egypt. In contrast, it was (9.5 and 18%) in cattle, (6.5 and 23.3%) in sheep and goats, respectively, in Al Gabal al Akhdar, Libya. Fluctuations in the prevalence rates may be due to the changes in the environmental conditions that affect both vectors and parasites. Theileria spp. predominated among the two piroplasma species found in the current investigation in sheep (24.7%) and goats (14.5%). These variations can be attributed to the difference in vector distribution according to temperature and humidity. Besides, animals that recover from babesiosis develop resistance to re-infection (Adamu and Balarabe, 2012). Additionally, Babesia spp. rarely persist in sheep and goats (Jatau et al., 2011). The purpose of this study was to use the 18S rDNA gene to molecularly diagnose different piroplasma species. 38 of the blood samples failed to amplify using PCR even though they were positive on morphological screening. These findings concurred with those of (Mohamaden et al., 2018) and may be explained by the majority of the cases being sub-clinically infected.

Babesia species sequences in the current investigation have a range of identities with those species in the GeneBank (99 to 100 %). These fragmented sequences from B. bigemina in the GeneBank came from various areas (MN053036.1 from Cuba, MH047816.1 from the USA, and MG604302.1 from Argentina) and have (100%) similarity with our species sequences. MN053042.1 from Cuba, EF458208.1 from Germany and MH045747.1 from the United States show 99.71% identities with our sequences of B. bovis species. As a result, the small subunit rRNA gene region provides a reliable diagnostic marker for Babesia spp. and exhibits no change related to geographic distribution. These results are consistent with (El-Dakhly et al., 2020). In contrast, Theileria spp., the small subunit rRNA gene was unable to amplify our Theileria species. These may be attributed to the variation of the diagnostic marker of Theileria spp. even among isolates from the same geographical districts, which may lead to the failure of the amplification of the species, therefore the small subunit rRNA gene is not a good diagnostic marker in Theileria spp (El-Dakhly et al., 2020).

Conclusion
Molecular identification will support and enhance the diagnosis of diseases and selecting a successful genetic marker for diagnosis purposes will give good results, using Real-time PCR in the diagnosis of blood parasites may give better results than conventional PCR.

Ethics
This study was approved by the Ethics Committee of Faculty of Veterinary Medicine.
Science, Suez Canal University, Egypt with approval number (2018123).

Conflict of interest
The authors declare that they have no conflict of interest.

References

15. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis
across computing platforms. Molecular biology and evolution 35, 1547.

23. Tarimo, M.A., 2013. Studies on the prevalence of east coast fever among cattle in Kilosa district. Sokoine University of Agriculture,

Fig. (1) Microphotograph of different shapes of *Babesia bigemina* with ovoid and amoeboid shapes inside the erythrocytes in giemsa stained blood smear.

Fig. (2) Microphotograph (A) of *Babesia bigemina* with Pyriform body at acute angle inside the erythrocytes in giemsa stained blood smear. Microphotograph (B and C) of *B. bigemina* (D) of *B. bovis* inside the erythrocytes in giemsa stained blood smear.

Fig. (3): (A)&(B) Blood smear stained with giemsa showing *Babesia ovis* in the red blood cell
Fig. (4): Microphotograph (A and B) of *Theileria annulata* inside the erythrocytes in Giemsa stained blood smear. Microphotograph (C) of pleomorphic *Theileria annulata* with polychromatic (sever infection) in Giemsa stained blood smear.

Fig.(5): Blood smear stained with giemsa showing *Thieleria ovis* inside the red blood cells.
Fig. (6): The phylogenetic analysis was constructed using neighbor–joining (NJ) methods, to construct the phylogenetic tree of some of *Babesia* species sequences from the Genbank and our sequences samples are included based on 18S rDNA sequences.
Table (1): Prevalence of *Babesia* spp., *Theileria* spp. and total infection of piroplasma at different localities of Ismailia province, Egypt and Al Gabal al Akhdar province, Libya

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Ismailia province, Egypt.</th>
<th>Al Gabal al Akhdar province, Libya.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cattle</td>
<td>Buffaloes</td>
</tr>
<tr>
<td>Babesia spp.</td>
<td>No. infected</td>
<td>(%)</td>
</tr>
<tr>
<td>6/96</td>
<td>6.3</td>
<td>4/113</td>
</tr>
<tr>
<td>Theileria spp.</td>
<td>17/96</td>
<td>17.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locality</th>
<th>No. Examined</th>
<th>Infected (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasassn</td>
<td>17</td>
<td>(41.2)</td>
<td>22</td>
<td>(27.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elabtal</td>
<td>25</td>
<td>(12.5)</td>
<td>20</td>
<td>(15.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kantara</td>
<td>15</td>
<td>(33.3)</td>
<td>28</td>
<td>(10.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abu atwa</td>
<td>20</td>
<td>(25.0)</td>
<td>17</td>
<td>(29.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarabio</td>
<td>19</td>
<td>(15.8)</td>
<td>26</td>
<td>(19.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>(23.9)</td>
<td>113</td>
<td>(19.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Bayda</td>
<td>30</td>
<td>(20)</td>
<td>80</td>
<td>(41)</td>
<td>15</td>
<td>(13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shahat</td>
<td>18</td>
<td>(17)</td>
<td>70</td>
<td>(19)</td>
<td>12</td>
<td>(33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faydyah</td>
<td>20</td>
<td>(35)</td>
<td>85</td>
<td>(27)</td>
<td>10</td>
<td>(30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massah</td>
<td>22</td>
<td>(40.9)</td>
<td>72</td>
<td>(29)</td>
<td>18</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gandula</td>
<td>15</td>
<td>(27)</td>
<td>65</td>
<td>(40)</td>
<td>7</td>
<td>(43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>(27.6)</td>
<td>372</td>
<td>(31)</td>
<td>62</td>
<td>(21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of infected animals in relation to total no. of animals examined in each location. Total : Chi-Square (x^2) = 216.094, DF= 6, P. Value= 0.000 (highly Significant).
الكشف المورفولوجي والجزيئي للطفيليات الدموية المنقولة بالقراد في المجترات من الجبل الأخضر، ليبيا ومحافظة الإسماعيلية، مصر

د. نهله حامد سلام، د. محمد الجدر، د. محمد سالم سلطان، إ.د. حمدي محمد عبد الوهاب الجوادي، د. إيمان محمد أبوالحسن.

تعتبر الأمراض التي تنتقل عن طريق القراد من العوامل الهامة التي تؤثر على صحة الحيوانات في جميع أنحاء العالم، في كل من المناطق الاستوائية وشبه الاستوائية. الهدف من هذه الدراسة هو دراسة مدى انتشار أنواع البيروبلازما في كل من منطقة الجبل الأخضر في شمال شرق ليبيا والإسماعيلية بمصر. تم جمع عينات الدم بشكل عشوائي من 748 حيواناً شرقيًا من مناطق مختلفة في ليبيا ومصر خلال الفترة الممتدة من يناير 2020 إلى يناير 2021. واستخدمت أفلام الدم المصبوغة للفحص المجهري المباشر، وتم استخدام تفاعل البوليميراز المتسلسل التقليدي لتحديد النوع الجيني ووراثي لأغراض التشخيص. وأظهرت النتائج أن نسبة انتشار البيروبلازما في مصر بلغت 23.9% في الأبقار، و19.5% في الجاموس، بينما بلغت في الأبقار 27.6%، و31% في الأغنام، و21% في الماعز في ليبيا. إن اختيار دليل جيني وراثي جيد لأعراض التشخيص سيعطي نتائج أفضل، واستخدام تفاعل البوليميراز المتسلسل (الريف تيم) في تشخيص طفيليات الدم قد يعطي نتائج أفضل من تفاعل البوليميراز المتسلسل التقليدي.

الكلمات المفتاحية: جزيئية، مجهري، طفيليات دموية، مجهري، بابيزيا، ثيليريا.