El-Alfy, E. N.; Al-Kappany, Y. M. and Abu-Elwafa, S. A.

Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Egypt.

Abstract:
The present study was carried on 939 carcasses of slaughtered animals at Mansoura abattoir (387 cattle, 205 buffaloes and 347 sheep), of various ages, sex and breeds in order to investigate the incidence of grossly visible tissue parasites. Macroscopic Sarcocystis spp. cysts were recorded in 26.82% of examined buffalo carcasses. Hydatid cysts were recovered at overall incidence rate of 2.02%, where buffaloes showed higher infection (2.43%) than cattle (1.80%). Cysticercus bovis cysts were only recovered from heart of two cattle (0.51%), while no infection was detected in buffalo carcasses. Cysticercus tenuicollis cysts were found in cattle (0.25%). In sheep, Cysticercus tenuicollis cysts were recorded at high rate of 21.03% and Cysticercus ovis cysts were detected in 5.47% of examined sheep carcasses. The seasonal dynamics and anatomical distribution of the detected parasites were studied. Moreover, these parasites caused variable range of tissue lesions, from non-significant pathology as in macroscopic sarcocystosis to those caused extensive damage resulting in infiltrative, degenerative changes, necrosis and granuloma formation.

Key words: Prevalence, Sarcocystis, Hydatid, Cysticercus, Egypt.

INTRODUCTION

Egypt is an agriculture based country and livestock sector plays a major role in its economy, Dakahlia Province is considered one of the largest agricultural district in the Nile Delta, if not in the Nile valley where the largest number of farm animals present there, (EL Shazly et al., 2002). Mansoura abattoir is large municipal abattoir in Dakahlia province due to large number of animals slaughtered there. Cattle, buffaloes and sheep are considered the main sources of national and individual income as they are multipurpose animals producing milk, meat and hide. The recent increase in human population in Egypt necessitates maintaining a higher
production levels of our stock by eliminating all risk factors threatens animals health, among which, disease producing agents were the most important. Parasitic diseases are a global problem and considered as a major obstacle in the health and performance of livestock (Abera et al., 2010) therefore, parasites control may allow for increase weight gains, improve feed conversion, increase milk production, improve reproductive performance, improve carcass quality, improve immune status and may reduce morbidity and mortality (Hawkins, 1993). There is no single requirement more crucial to the sustainable control of parasites in grazing animals than a comprehensive knowledge of the epidemiology of the parasites as they interacts with the host in a specific climatic, management and production environment (Barger, 1999).

Tissue parasites are considered to have major economic significance resulting from condemnation of edible organs and downgrading of infected carcasses as well as the zoonotic importance of some parasites which causes public health problems. The metacestodes causing tissue damage in different organs, resulting in condemnation of meat or viscera (Oryan et al; 1994). Taenia saginata cysticercosis and hydatidosis are considered as an important public health problem (Schandevyl and Vercruysse; 1982, Singh and Dhar; 1988, Oryan et al; 1995). Also, Sarcocystis species are obligate tissue protozoan parasites of livestock causing downgrading of the meat and their products thereby leading to economic losses (JyothiSree et al; 2016).

Therefore, this study was planned to determine the prevalence of different tissue parasites among slaughtered animals in Dakahlia province for assessment of the role played by strategic deworming and good management practice in reduction of their existence as well as to describe the pathological lesions caused by them.

MATERIAL AND METHODS

1. Animals and study area:

A total number of 387 cattle, 205 buffaloes and 347 sheep carcasses were examined at slaughtering during the period extended from August 2015 to July 2016 for detection of grossly visible tissue parasites in Mansoura abattoir, Dakahlia province. Routine meat inspection was carried out on each slaughtered animal including, the whole carcass and the internal organs, according to Gracey et al., 1999. Sex was detected from examined carcasses while, age couldn’t be included in the study due to frequent separation of heads for separate inspection.

2. Laboratory examination and permanent mounts for identification of
revealed parasites according to Pritchard and Kruse, 1982 guidelines:

Cysts of *Sarcocystis* were dissected out from surrounding muscular tissue and their sizes were measured, then cysts were crushed between two glass slides and their contents were diluted with few drops of saline and spread over the two glass slides to make a thin smear which fixed in methyl alcohol and stained by Geimsa stain. *Cysticercus bovis* and *Cysticercus ovis* cysts were dissected out from surrounding tissues and their sizes were measured then compressed between two glass slides and examined under stereomicroscope for detection of scolex of viable cysts. *Hydatid* cysts were dissected out and their sizes were measured, then incision made to evacuate their contents and a drop of the whitish sediment representing *Hydatid* sand was examined under microscope. *Cysticercus tenuicollis* cysts were collected, their sizes were measured and incised to obtain their sclericed which compressed between two glass slides and examined under stereomicroscope.

3. Histopathological examination:

For more characterization of the revealed tissue parasites, some samples were fixed in formalin 10% and embedded in Paraffin wax. Thin sections of 4 -5 microns thickness were made and stained with H&E stain for suspected pathological lesions.

RESULTS

Inspection of 387 cattle, 205 buffaloes and 347 sheep revealed five visible tissue parasites namely; *Cysticercus bovis*, *Cysticercus ovis*, *Cysticercus tenuicollis*, *Hydatid* cyst and finally *Sarcocystis* species.

1. Overall incidence and tissue distribution:

1.1. Cattle and buffaloes:

During inspection of carcasses of cattle and buffaloes, four tissue parasites were detected namely, *Cysticercus bovis*, *Hydatid* cyst, *Cysticercus tenuicollis* and *Sarcocystis* species. Macroscopic *Sarcocystis* spp. cysts were recovered from buffaloes at a rate of 26.82% while, no cases were recorded in cattle. *Cysticercus bovis* cysts were recovered from cattle only at very low incidence rate (0.51%) and were not detected in examined buffaloes. *Hydatid* cysts were the tissue cysts recorded in both cattle and buffaloes at a low rate of 2.02% in total examined large ruminants, where buffaloes showed higher incidence (2.43%) than cattle (1.80%).

Tissue distribution of the revealed sarcozysts indicated that esophagus was the mostly infected organ with a prevalence of
100% as cysts are detected in esophagus of all infected cases, followed by throat muscles (3.63%) where, only two cases were found in mixed infection of esophageal and throat muscles. Heads of slaughtered animals were separated from carcasses as a routine habits occurring in Mansoura abattoir and examined separately for the presence of Sarcocystis where, 9 cases were found with Sarcocystis spp. cysts in tongue (4.39%) from total examined buffalo heads. All Hydatid cysts recovered from cattle were detected in lungs only (100%) while, in buffaloes 4 cases were recorded in lungs (80%) and only one case was recorded with Hydatid cysts in both liver and lungs (20%). Cysticercus bovis cysts were only recovered from hearts of two cattle (0.51%) while, Cysticercus tenuicollis cysts were recorded in one cattle omentum (0.25%).

1. 2. Sheep:

During postmortem inspection of carcasses of slaughtered sheep, two types of tissue cysts were recorded where; Cysticercus tenuicollis cysts prevailed at higher rate (21.03%) than Cysticercus ovis cysts (5.47%).

Regarding the tissue distribution pattern of recovered Cysticercus tenuicollis cysts, omentum recorded to be the highest infected tissue (56.16%) as single infection, followed by mesentery (17.80%) and liver (13.69%) as single infections then mixed infection of liver and omentum (8.21%) and mixed infection of liver and mesentery (4.10%) where, recorded cases were 41, 13, 10, 6, 3 out of total infected 73 cases with C. tenuicollis in the mentioned five tissue distribution patterns respectively. All Cysticercus ovis cysts were recovered from hearts of sheep.

2. Seasonal prevalence of tissue parasites among examined animals:

Table (1) showed the seasonal dynamics of detected Sarcocystis spp. cysts in esophageal musculature where, the higher infection rates were detected in Autumn (34.28%) followed by Summer (26.25%), Spring (25.53%) and Winter (23.25). Among total examined large ruminants, Hydatid cysts were recorded to be at highest rate during Autumn (4.71%), followed by Summer (2.12%), then Spring (0.82%) and Winter had the lowest prevalence (0.76).

Dealing with the seasonal fluctuations in incidence of C. tenuicollis infection in sheep, Spring was recorded with the highest infection (28.26%), followed by Autumn (22.97%), Summer (17.09%) and the lowest was in winter (15.62%). Moreover, sheep showed the highest infection with Cysticercus ovis in Summer and Spring (6.83% and 6.52%),
respectively), followed by Autumn (4.05%) and the lowest was in Winter (3.12%).

3. Prevalence of tissue parasites in relation to sex:

Buffalo females showed higher infection with sarcocystosis (42.37%) than males (20.54%). Also, females were highly infected with hydatidosis (6.77% and 6.25%) than males (0.68% and 1.40%), in buffaloes and cattle, respectively. In contrast, sheep males appeared to be infected with *C. tenuicollis* and *C. ovis* higher (21.14% and 6.04%, respectively) than females (20.40% and 2.04%, respectively).

4. Pathological lesions of the revealed tissue parasites:

4.1. *Cysticercus bovis*:

The only identified two cysts were calcified and appeared as small yellowish whitish hard calcareous nodules around 5 mm in size and microscopically appeared as focal area of caseation and calcifications surrounded by fibrous connective tissue and inflammatory cells infiltration.

4.2. *Hydatid cyst*:

Only one case was detected with caseous cysts that were similar in shape to the unilocular cysts and upon incisions in that cyst revealed that the cavity of these specimens filled with a thick matrix of creamy to cheesy material and laminated layer of the wall still present that may be due to bacterial contamination of the cysts. Degenerative changes in both cysts and tissues were detected from histological sections taken from random samples where changes ranged from highly infiltration of the tissue surrounding cysts with inflammatory cells to granulomatous reactions formed from macrophage, giant cells and lymphocytic infiltrations and finally calcification while cystic degeneration was the absence of a germinal layer and the presence of intact laminated layer and necrotic wall of the cyst.

4.3. *Cysticercus tenuicollis*:

Cysts in livers were detected either rested flat on the surface, or made adhesion between liver lobes which completely or partially surrounded the cyst with fibrous connective tissues extending to larger area of liver parenchyma, however histological sections revealed no inflammatory cells infiltration.

4.4. *Cysticercus ovis*:

Macroscopically, no viable cysts were detected where the degenerated cysts appeared as hard creamy nodules with ill-defined edges and a core of cheesy content if caseated and some cysts were calcified. Microscopically, the muscle fibers revealed severe degenerative and necrotic changes ranged from focal area of caseation surrounded by fibrous connective tissue and infiltration of the tissue with inflammatory
cells to granuloma formation which consisted of central area of caseation surrounded by macrophages, lymphocytes, Langhan’s giant cells and surrounded by fibrous tissue with leukocytic infiltration of the surrounding tissue. Some sections showed areas of calcifications.

4. 5. Sarcocystis spp.:
Histological sections were taken from infected muscles and cross section in cysts revealed its division into compartments each consisted of myriads crescentic bradyzoites without inflammatory cells infiltration.

Discussion
In our study, macroscopic Sarcocystis spp. cysts were recorded in 26.82% of examined buffalo carcasses, which is near to Abu-Elwafa and Abbas (2011) (19.81%) and Metwally et al., (2014) (25.5 %), while higher than that recorded by Huong et al., (1997) (10.5%), Latif et al., (1999) (15.6%) and El-Dakhly et al., (2011) (6.9%), and lower than those obtained by Abass (2008) (67.32%). Esophagus was the mostly infected organ (100%), where cysts detected in esophagus of all infected cases, which agreed with Huong (1999), Latif et al. (1999), and Abu-Elwafa et al. (2015).

Concerning the seasonal dynamics, the highest prevalence of Sarcocystis spp. infection in buffaloes was during Autumn (34.28%), which is agreed with Abass (2008) and Abu-Elwafa and Al-Araby (2008). Females showed higher incidence rate (42.37%) than males (20.54%), similar to that reported by Abass (2008) and El-Dakhly et al. (2011).

Higher incidence rate of macroscopic Sarcocystis spp. may be attributed to the significant role of felines in their transmission (Abu-Elwafa and Abbas, 2011). On the other hand, higher incidence among buffalo females may be attributed to that most of slaughtered females were old aged more than 5 years, being in agreement with Huong (1999) who stated that prevalence increase with age and higher infection among the oldest animals due to a longer exposure to the infection.

The achieved results in this study showed that the overall incidence of Hydatid cysts was 2.02% where, buffaloes showed higher incidence rate (2.43%) than cattle (1.80%), being nearly similar to those obtained by Kadir et al., (2012) (1.70% in cattle), Muqbil et al., (2012) (2.6% in cattle), and lower than Singh and Dhar (1988) (48.1% in buffaloes), Dalimi et al., (2002) (16.4% in cattle and 12.4% in buffaloes), Kouidri et al., (2012) (25.66%
in cattle), Elmajdoub and Rahman (2014) (10.56% in cattle), while higher than those obtained by Abu-Elwafa and Al-Araby (2008) (0.15% in cattle and 0.15% in buffaloes) and Omar et al., (2013) (0.068% in cattle).

Considering the tissue distribution of the recovered cysts, all Hydatid cysts recovered from cattle were detected in lungs only (100%), while in buffaloes, 4 cases were in lungs (80%) and only one case recorded with Hydatid cysts in both liver and lungs (20%). This is agreed with Singh and Dhar (1988); Dalimi et al., (2002); Amuamuta et al., (2012); Koudri et al., (2012); Asfaw and Afera (2014); Birhanu and Abda (2014) as they mentioned that lungs had the highest rate of infection followed by liver, while dissimilar to El-Madawy et al., (2011); Lahmar et al., (2012); Muqbil et al., (2012); Omar et al., (2013); Elmajdoub and Rahman (2014) as they reported that liver had the highest rate followed by lungs.

Our results showed that the highest infection of Hydatid cyst in cattle was recorded in Autumn (5.63%), and in buffaloes was in Summer (5%). This showed similarity to Elmajdoub and Rahman (2014) as they found that Autumn was recorded with the highest infection rate among examined cattle. Females are found highly infected with Hydatid cyst (6.77% and 6.25%) than males (0.68% and 1.40%) in buffaloes and cattle, respectively. This agreed with Elmajdoub and Rahman (2014); Birhanu and Abda (2014). Higher incidence among females may be attributed to that most of slaughtered cattle and buffalo females were old aged, more than 5 years.

Cysticercus bovis cysts were only recovered from hearts of two cattle (0.51%) and the two cases were males (0.56%), one in Winter (1.14%) and the other one was in Summer (0.64%), while no infection was detected in buffaloes. This incidence rate was slightly lower than that recorded by Abu-elwafa and Al-Araby (2008) (3.61%), Abdo et al., (2009) (1.6%), Bedu et al., (2011) (3%) and Usip et al., (2011) (2.09%), while higher than that of Dupuy et al., (2014) (0.14%) and Hashemnia et al., (2015) (0.078%). Lower incidence rate may be attributed to the covered irrigation system and lower incidence of Taenia saginata in man.

Cysticercus tenuicollis cysts are recorded to be the lowest incidence among tissue parasites infecting large ruminants where, only one case was recorded in cattle (0.25%), male (0.28%), and was recorded in Winter season (1.14%); similarly, Abass (2008) also recorded infection in cattle (0.071%) slaughtered in the same abattoir.
In sheep, the incidence of *Cysticercus tenuicollis* was recorded at higher rate (21.03%) among examined sheep. This result is found within the range recorded by Christodoulopoulos et al. (2008) (29.41%), Senlik (2008) (24.1%), Abu-Elwafa et al., (2009) (19.21%), Oryan et al., (2012) (17.52%) and Mekuria et al., (2013) (22.8%). Obtained results were higher than that recorded by Radfar et al., (2005) (12.87%), Sultan et al., (2010) (16.93%), Ghaffar (2011) (0.7%), Nimbalkar et al., (2011) (15.17%) and El-Dakhly et al., (2012) (1.6%), while lower than that obtained by Bekele et al., (1988) (37.1%), Sissay et al., (2008) (79%), Essa and Al-Azizz (2011) (40.55%) and Wondimu et al., (2011) (56.8%).

Regarding the tissue distribution pattern of recovered cysts in examined sheep, omentum recorded to be the highest infected tissue at rate of 56.16% as single infection, and 8.21% in mixed infection with liver. This is agreed with Radfar et al., (2005), Senlik (2008), Abu-Elwafa et al., (2009), Nimbalkar et al. (2011), Saulawa et al., (2011) and Wondimu et al., (2011). Dealing with the seasonal fluctuations in incidence of *C. tenuicollis* in examined sheep, Spring was recorded with the highest prevalence (28.26%), in agreement with Khanjari et al., (2015) and Mirzai and Rezaei (2015). Males appeared to be infected slightly higher with *C. tenuicollis* (21.14%) than females (20.40%), being agreed with Saulawa et al., (2011) and Mekuria et al., (2013).

Cysticercus ovis cysts in our study were recorded at lower incidence rate of 5.47%, where all cysts were recovered from hearts of sheep (100%). This result is nearly agreed with Abu-Elwafa and Al-Araby (2008) (8.27%), while higher than that obtained by Ibrahim et al., (2008) (2.97%), Oryan et al., (2012) (0.09%) and Hashemnia et al., (2016) (1.27%), and lower than that obtained by Al-Qureishy (2008) (12%) and Sissay et al., (2008) (26%).

The highest infection rate in our study was recorded in Summer and Spring at rates of 6.83%, 6.52%, respectively, being similar to that reported by Abu-Elwafa and Al-Araby (2008); as they revealed that the highest rates were in Spring and Summer, Abu-Elwafa et al., (2009); reported that the maximum rate of infection was in Summer, and Hashemnia et al., (2016); detected that higher prevalence rate in Spring, followed by Summer. Also, infection of sheep with that metacestodes recorded to be higher in males than females which mainly attributed to the regulations of slaughtering females and almost of the slaughtered sheep were males.
The main histopathological lesions described in this paper are similar to those reported by Hashemnia et al., 2016 (Cysticercus ovis), Scandrett et al., 2012 (Cysticercus bovis), and Sakamoto and Cabrera, 2003 (Hydatid cysts).
Table (1): Seasonal dynamics of tissue parasites revealed from slaughtered animals in Mansoura abattoir:

<table>
<thead>
<tr>
<th>Season</th>
<th>Cattle</th>
<th>Buffaloes</th>
<th>Sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. bovis</td>
<td>Hydatid</td>
<td>C. tenuicollis</td>
</tr>
<tr>
<td></td>
<td>No. Ex.</td>
<td>+ve</td>
<td>%</td>
</tr>
<tr>
<td>Summer</td>
<td>155</td>
<td>1</td>
<td>0.64</td>
</tr>
<tr>
<td>Autumn</td>
<td>71</td>
<td>-</td>
<td>0.00</td>
</tr>
<tr>
<td>Winter</td>
<td>87</td>
<td>1</td>
<td>1.14</td>
</tr>
<tr>
<td>Spring</td>
<td>74</td>
<td>-</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>387</td>
<td>2</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Table (2): Prevalence of tissue parasites in relation to sex of slaughtered animals in Mansoura abattoir:

<table>
<thead>
<tr>
<th>Sex</th>
<th>Cattle</th>
<th>Buffaloes</th>
<th>Sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. bovis</td>
<td>Hydatid</td>
<td>C. tenuicollis</td>
</tr>
<tr>
<td></td>
<td>No. Ex.</td>
<td>+ve</td>
<td>%</td>
</tr>
<tr>
<td>Male</td>
<td>355</td>
<td>2</td>
<td>0.56</td>
</tr>
<tr>
<td>Female</td>
<td>32</td>
<td>-</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>387</td>
<td>2</td>
<td>0.51</td>
</tr>
</tbody>
</table>
8. Caseated *Hydatid* cyst infecting large ruminant. 9. *Hydatid* broad capsule. 10. *C. tenuicollis* attached to remenant of omentun of sheep. 11. *C. tenuicollis* attached to liver of sheep. 12. *C. tenuicollis* attached to liver of sheep with adhesion of lobes. 13. *C. tenuicollis* scolex under stereomicroscope
Photo (1): Esophagus infected with intact macroscopic sarcocysts (arrows) cross section composed of compartments each consisted of myriads crescentic bradyzoites (H&E, X: 50).

Photo (2): Heart of cattle infected with dead C. bovis cyst shows focal caseation and calcification surrounded by fibrous tissue and inflammatory cells (arrows) (H&E, X: 100).

Photo (3): Liver of sheep infected with C. tenuicollis without any significant pathological lesions (arrow) (H&E, X: 100).

Photo (4): Heart of sheep infected with dead C. ovis cyst shows focal caseation (thick arrow) and calcification (thin arrow) surrounded by fibrous tissue (H&E, X: 100).

Photo (5): Heart of sheep infected with dead C. ovis cyst shows granuloma formation consisted of central area of caseation surrounded by macrophages, lymphocytes, Langhan’s giant cells and surrounded by fibrous tissue (arrow) (H&E, X: 100).

Photo (6): Heart of sheep infected with dead C. ovis cyst high power to show granuloma formation consisted of central area of caseation surrounded by macrophages, lymphocytes, Langhan’s giant cells and surrounded by fibrous tissue (arrows) (H&E, X: 200).
Photo (7): Liver infected with fertile hydatid cyst (long arrow) showing granulomatous reaction in hepatic parenchyma characterized by aggregation of macrophages and giant cells (short arrows) (H&E, X: 100).

Photo (8): Liver infected with fertile hydatid cyst shows extensive fibrosis (asterisk) with hyaline degeneration (arrow) (H&E, X: 100).

Photo (9): Lung infected with fertile hydatid cyst (arrow) L: lumen surrounded by extensive fibrosis and inflammatory cells (asterisk) (H&E, X: 200).
Photo (10): Lung infected with fertile hydatid cyst consisted of form outside laminated wall (thick arrow), germinall epithelium (thin arrow) and broad capsule (arrowheads) (H&E, X: 50).

Photo (11): Lung infected with fertile hydatid cyst high power of previous Fig. to show broad capsule (arrowheads) enclosing many invaginated scolices (H&E, X: 50).

References
Abass, I., E., A. (2008): Studies on tissue parasites of farm animals in Dakahlia province. M. V. SC. Thesis, Faculty of Veterinary Medicine, Mansoura University.

El-Madawy R. S., Khalifa N. O. and Afify, J. S.A. (2011): Epidemiological and molecular studies Of Hydatid Cyst In slaughtered cattle and sheep in Toukh,
El-Alfy, N. et al.

JyothiSree, C., Venu, R., Samatha, V., Malakondaiah, P., and Rayulu, V. C. (2016): Prevalence and microscopic studies of Sarcocystis infection in naturally infected water...

Nimbalkar, R. K., Shinde, S. S., Kamitikar, V. N., and Muley, S. P. (2011): Study on Taenia hydatigena in the slaughtered sheep (Ovis bharal) and goats (Capra hircus) in Maharashtra,

El-Alfy, N. et al.

الملخص العربي

 دراسات طفيلية و باثولوجية نسيجية على طفيليات الأنسجة الموجودة بالحيوانات المذبوحة

محافظة الدقهلية

يارا محسن القباني
صلاح احمد ابوالوفا

قسم الطفليات - كلية الطب البيطري - جامعة المنصورة - مصر

أجريت هذه الدراسة لتحديد الطفيليات المنتشرة بين أنواع الحيوانات المذبوحة بالدقهلية من خلال زيارات منتظمة إلى مجزر المنصورة حيث تم فحص عدد 939 ذئب المجترات، 387 من الأبقار، 2005 من الجاموس و 347 من الأغنام للكشف عن مدى اصابتها خلال الفترة الممتدة من اغسطس 2015 إلى يوليو 2016. اثناء فحص ذئاب الأبقار وجدت 3 أنواع من طفيليات الأنسجة وهم: الاكياس المائية اليدبادية (0.41%)، البرقية المثانية البقريه (0.51%) و البرقية المثانية ذات الرقبة المعلقة (0.26%) اما فحص ذئاب الرياح الميسى (0.43%) و البرقية المثانية البقريه (0.22%) و الاكياس المائية اليدبادية (0.10%) و أيضا وجد اصابه في ذئاب الأغنام بنوعين من طفيليات الأنسجة وهم: البرقية المثانية ذات الرقبة المعلقة (0.41%) و البرقية المثانية البقريه (0.51%). وقد دراسة معدل الانتشار وكذلك معدل الانتشار الموسمي والتوزيع التشريحي لهذه الطفيليات. وكذلك دراسة التغييرات الباثولوجية التي تحدث في الأنسجة والاعضاء المختلفة لهذه الحيوانات بهدف التوصل لنتائج موثقة تتشخيص هذه الطفيليات في الأنسجة المختلفة.