Occurrence of some Parasites in farmed ostriches (Struthio camelus) in Egypt

Abstract

Ostrich farming is a new field of livestock production in Egypt and still in its infancy stage in comparison to the poultry industry. Parasitism is considered as a potential health problem hindering the development of ostrich production resulting in economic losses. Feathers and fresh faecal samples were collected from 26 farmed ostriches and examined microscopically for external and internal parasites. Three species of ectoparasites; Gabucinia bicaudata (3.85%), Dermoglyphus pachynemis (3.85%), Struthiolipeurus struthionis (3.85%) and four species of internal ones; Strongylid egg "Libyostongylus" sp. or Codistomum sp." (3.85%), Cryptosporidium sp. (15.38%) Eimeria sp. (3.85%), Balantidium struthionis (7.69%) were recorded and identified. Dermoglyphus pachynemis was reported for the first time in farmed ostrich in Egypt.

Keywords: Farmed ostriches, Struthio camelus, ectoparasites, endoparasites
Introduction

Ostriches are one of the toughest and strongest birds on this planet. They can be reared in northern and southern countries outside Africa, but climate is a limitation for a profitable farming. The ostrich industry is considered as a multi-processing business producing a number of commodities as feathers, leather and meat (Pittaway and Van Niekerk, 2015). Ostrich farms have become an extended activity throughout the world and considered to be one of the most preferable agriculture project. Ostrich meat is a wonderful, healthy red meat with all of the flavor and texture of beef; it is rich in protein and high in iron and lower in fat, calories and cholesterol than other meat sources. On the other hand, ostrich feathers are used to clean fine machinery and equipment as well as for aesthetics and in the fashion industry. Furthermore tendons of ostrich leg are used to replace torn tendons in human leg and a substance derived from ostrich brain is being studied for the treatment of Alzheimer’s disease and other types of dementia (Shanawany, 1994).

Ostriches live mostly in desolate desert climates, so they have to be flexible in their diet and eat almost anythings like plants, lizards, seeds and locusts; these make them susceptible to many infections including parasitic ones. The later seem to be uncommon in ostrich all over the world (Dingle, 1996; Huchzermeyer, 1998) inspite of some of these infections may lead to the death of infected birds (Nel, 1980). Ostriches may be infested with their own specific parasites as well as with external and internal parasites of other birds (Eslami et al., 2007). Ostrich diseases and parasites reported in Africa include tapeworm, nematodes, lice and ticks (Davis, 1998). This study aimed to record and identifies the parasites infecting farmed ostriches in Egypt.

Materials and Methods

This study was carried out on 26 farmed ostriches inhabiting three small scale ostrich farms in Sharkia and Ismaalia provinces. Feathers and fecal samples from each bird were taken by veterinarians working on the farms. Feathers were kept in sealed plastic bags at room temperature. In the laboratory, feathers were examined under a stereomicroscope at 10–60× magnification. The recovered ectoparasites were collected, stored in 70% ethanol, then cleared in lactophenol until slide mounts in
polyvol were made (Belding, 1965). Fresh faecal samples were collected from each bird in the early hours of the morning using clean polythene bags and labeled serially.

Parasitological examination was performed on fresh faeces using direct, sedimentation and floatation methods. The direct fecal smears were examined according to Beaver et al. (1989). Formaline-ethyl acetate sedimentation technique was processed and wet mounts from the sediment were made for detection of diagnostic stages of the parasite (Levine and Estevez, 1983). Sheather's sugar flotation technique was done; two grams of fecal sample were mixed with a small amount of tap water. The mixture was screened through a coarse sieve, poured into a 15ml centrifuge tube and spun at 1200 rpm for 5 min. The supernatant was discarded; 12 ml Sheather's sugar flotation solution (specific gravity = 1.27) was added, mixed to break up the pellet and then more sugar solution was added to form a convex meniscus. A cover slip was placed on the meniscus and allowed to stand for 30 min. The cover slip to which the eggs adhered was removed from the tube and placed on a microscope slide then examined under microscope (Dryden et al., 2005). Oocysts of Cryptosporidium sp. and Eimeria sp were stained with modified Zeil Neelsen and sporulated in potassium dichromate 2.5% respectively. The detected parasites were identified according to previous literatures (Ponce Gordo et al., 2002; Yaman and Durgut, 2005; Cooper and EL Doumani, 2006 and Taylor et al., 2007).

Results and Discussion

An overall ten out of twenty six (38.46%) of the examined farmed ostriches in three different small scale farms were found positive for various parasitites and the infection was single. Feathers of few numbers of examined ostriches (7.69%) were found to be infested with ectoparasites, while a greater numbers (30.77%) of the collected fecal samples were found infected with endoparasites. In the current study two species of mites (3.85%) were identified; Gabucinia bicaudata and Dermoglyphus pachycnemis (Fig. 1). These were collected mainly from the vein in the ventral groove of large wing feathers and appear as small, reddish, dust-like, elongated particles in the feather vein. A species of lice (3.85%); Struthiolipeurus struthionis was recovered from the feather barbs all over the body and appears as narrow-bodied lice with large heads (Table 1; Fig. 1). The low prevalence of parasites...
of ostrich may attributed to antiparasitic program used for eradication of parasites.

There are several types of arthropods that consider the major ectoparasites of ostrich in the world, primarily mites and lice (Ponce Gordo et al., 2002). Non determined infection rate with mite and hundred percent prevalence of *Struthiolipeurus* lice were given in study on parasites of farmed ostriches and rheas in Europe (Ponce Gordo et al., 2002); while ostriches raised in northern Nigeria showed a higher infection rate with mite "11.6%" (Mshelia et al., 2010). *Gabucinia bicaudata* detected in this study was reported as a species of mite infesting farmed ostriches in Europe (Ponce Gordo et al., 2002; Nemejc and Lukesova, 2012), State of Rio Grande do Su in Brazil (Ribeiro et al., 2004), small scale private farms in Egypt (Cooper and EL Doumani, 2006) and had been collected from Southeastern Brazil as *Struthiopterolichus bicaudatus* (Faccini et al., 2006). The current study reported *Dermoglyphus pachycnemis* from wing feathers of farmed ostrich for first time in Egypt, this come in accordance with the finding the same species in Europe by Ponce Gordo et al. (2002) who stated that there is no previous report of this species from ostrich in Europe. *Struthiolipeurus struthionis* isolated in this study correspond findings of the same species in small scale private ostrich farm (Cooper and EL Doumani, 2006) as well as ectoparasites of *Gabucinia* and *Struthiolipeurus* were recorded in captive ostriches at the zoo (Andrém, 1960 and Dom´ınguez et al., 1976) and imported ones in Sweden (Jansson and Christensson, 2000). The infested ostriches showed mild broken feathers with lacking barbs primarily in the large wing feathers and mild feather preening and loss; comparable findings were observed in some infested ostrich farms (Verocai et al., 2008).

Concerning the endoparasites, coprological examination revealed four species of parasites infecting farmed ostriches; Strongylid egg "*Libyostongylus* sp. or *Codiostomum* sp. egg" (3.85%), *Cryptosporidium* sp. (15.38%) *Eimeria* sp. (3.85%), *Balantidium struthionis* (7.69%) (Table 1). The farmed ostriches in Europe revealed a higher infection rate with *Libyostongylus* sp. "20%", *Cryptosporidium* sp. "60%", *Balantidium struthionis" 80%" and a lower one in *Eimeria* sp. "less than 1%" (Ponce gordo et al., 2002). Similary, higher rates of infection with Strongylid egg (14.9%) and *Eimeria* sp. (11.6%) were recoded in ostriches raised in northern Nigeria (Mshelia et al., 2010). Strongylid
Occurrence of some Parasites

Arafa and Hashem

eggs "Libyostongylus sp. or Codiostomum sp.
" recovered from fresh faeces showed higher prevalences "25% and 55%" and
"39.89%" in ostrich raised at two different areas in Iran (Eslami et al., 2007) and
Greece (Sotiraki et al., 2001) repectively, other than higher infection rate of
Cryptosporidium sp. (28%) in farmed ostriches was reported in Iran (Behzadil et
al., 2009).

Libyostongylus or Codiostomum spp. eggs are oval, measures 59-74 by 36-44
µm and contains an advanced morula-developing larvae (Fig.2 A), our finding
coincides with presence of Libyostongylus sp. eggs in faeces of raised ostriches in
Sweden (Jansson and Christensson, 2000) and Spain and Portugal (Ponce gordo et al.,
2002). Libyostongylus sp. is considered the most pathogenic nematode responsible
for 50% of the mortality of juvenile birds and occasionally killing adults (Reinecke,1983).
Diagnostic stages of protozoal parasites observed in this study include
Cryptosporidium sp., Eimeria sp. and
Balantidium struthionis. Cryptosporidium sp.
oocysts are ovoid to subspherical, measure
5-6 µm and contains sporozoites which appear as refractile granules in wet mount
and red colour in sample stained with modified Zeil Neelsen (Fig.2 B). Cryptosporidium oocysts had been isolated
from ostriches in Greece (Sotiraki et al., 2001) and widely distributed in Spanish and
Portuguese ostriches (Ponce gordo et al., 2002). Infection with Cryptosporidium sp
may cause of phallus and cloacal prolapse in ostrich chicks (Penrith et al., 1994) and
enteritis (Huchzermeyer, 1998). Eimeria sp. oocysts are spherical with a double
layerd wall, measure 15-18 µm and contain four sporocysts each one has two
sporozoites(Fig.2 C). Corresponding finding of Eimeria sp. oocyst was detected in
ostrich faeces (Sotiraki et al.,2001 and Eslami et al., 2007). Symptoms of coccidial
infection are usually minimal in ostriches and the infection can only be properly
diagnosed by post-mortem examination (Dingle and Shanawany, 1999). Balantidium
struthionis cysts are spherical and measure 50-55 µm (Fig 2 D). This species was
considered as ostrich specific (Sotiraki et al., 2001) while, other findings have been
recorded as Balantidium sp. (Jansson and Christensson, 2000). Later, Ponce gordo et
al. (2008) consider the Balantidium species from ostriches as Balantidium coli-like.
References
Cooper, R.G. and ELDoumani, H.A.A. (2006) : The Presence of Quill Mites (Gabucinia bicaudata) and Lice (Struthiolipeurus struthionis) in Ostrich Wing

Table (1). Occurrence of parasitic infection among farmed ostriches

<table>
<thead>
<tr>
<th>Parasite species</th>
<th>Farm I</th>
<th>Farm II</th>
<th>Farm III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. examined (9)</td>
<td>No. examined (7)</td>
<td>No. examined (10)</td>
<td>(26)</td>
</tr>
<tr>
<td></td>
<td>No. positive (%)</td>
<td>No. positive (%)</td>
<td>No. positive (%)</td>
<td>No. positive (%)</td>
</tr>
<tr>
<td>A) Ectoparasites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mites(G. bicaudata, D. pachycnemis)</td>
<td>1 (11.11)</td>
<td>0 (00.00)</td>
<td>1 (10.00)</td>
<td>2 (7.69)</td>
</tr>
<tr>
<td>• Lice (Struthiolipeurus struthionis)</td>
<td>0 (00.00)</td>
<td>0 (00.00)</td>
<td>0 (00.00)</td>
<td>1 (3.85)</td>
</tr>
<tr>
<td>B) Endoparasites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Strongylid eggs</td>
<td>3 (33.33)</td>
<td>2 (28.57)</td>
<td>3 (30.0)</td>
<td>8 (30.77)</td>
</tr>
<tr>
<td>• Cryptosporidium sp.</td>
<td>0 (00.00)</td>
<td>0 (00.00)</td>
<td>1 (10.00)</td>
<td>1 (3.85)</td>
</tr>
<tr>
<td>• Eimeria sp.</td>
<td>2 (22.22)</td>
<td>1 (14.29)</td>
<td>1 (10.00)</td>
<td>4 (15.38)</td>
</tr>
<tr>
<td>• Balantidium struthionis</td>
<td>1 (11.11)</td>
<td>0 (00.00)</td>
<td>0 (00.00)</td>
<td>1 (3.85)</td>
</tr>
<tr>
<td>Total</td>
<td>4 (44.44)</td>
<td>2 (28.57)</td>
<td>4 (40.00)</td>
<td>10 (38.46)</td>
</tr>
</tbody>
</table>

Table (1). Occurrence of parasitic infection among farmed ostriches.
Occurrence of some Parasites

Arafa and Hashem - EVMSPJ2016-12: 91-100

A

B

C

D
Occurrence of some Parasites

Arafa and Hashem
EVMSPJ2016-12: 91-100

Fig. 1. Ectoparasites of farmed ostrich. A) Gabucinia bicaudata (male), B Gabucinia bicaudata (female); scale bar: 0.25 mm. C) Dermoglyphus pachycnemis (female); scale bar: 0.25 mm. D) Struthiolipeurus struthionis (male) scale bar: 0.5 mm

Fig. 2. Endoparasites of farmed ostrich. A) Strongylid egg (Libyostrongylus or Codistomum spp.); scale bar: 20 μm. B) Cryptosporidium sp. oocyst (Modified Ziel Neelsen staining); scale bar: 5 μm. C) Eimeria sp. sporulated oocyst; scale bar: 10 μm. D) Balantidium struthionis cyst (Lugol's staining) scale bar: 50 μm.
تتواجد بعض الطفيليات في نعام المزارع في مصر
نصير محمد السيد
قسم الطفيليات - كلية الطب البيطري - جامعة الزقازيق

زراعة اننعاو هي حقل جذير للإنتاج الحيوي في جميع أنحاء العالم والتي لا تزال في مرحلة الطفولة مقارنة بصناعة الدواجن. يعتبر التطور مسألة صحية محتملة تعوق تطور النعاع مما قد يؤدي إلى خسائر اقتصادية. تم فحص عدد 26 عينة من نعام المزارع (الريش والبراز) عينياً و مهبلياً للتعرف على الطفيليات الخارجية والداخلية. تم التعرف على ثلاثة أنواع من الطفيليات الخارجية: جيبطينيا بايكوداتا (3.85%)

Dermoglyphus pachynemis (3.8%)

Struthiolipeurus struthionis (3.85%)

Codiostomum sp.

Liyostrongylus/Codiostomum sp.

الاسترنوجوليس "ليبوسترونجوليس أو كوديستوموم" (8.35%)

Cryptosporidium sp.

(15.38%) ، حوصلات الكريبتوسبوريديوم

(3.85%)

Balantidium struthionis (7.69%)

Eimeria sp.